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2.1 Introduction

The Pacific basin-wide changes in climate and
ocean parameters are reported in Section 1. To
describe specific regional responses to the basin-
wide changes, we divided the North Pacific into
five major regions (Fig. 2.1): the central North
Pacific, which includes the transition zone and the
Hawaiian Islands; the California Current System
from California up to northern Vancouver Island;
the Gulf of Alaska system from northern
Vancouver Island to the start of the Aleutian
Islands, including the central Gulf region; the

Bering Sea and Aleutian Islands; the western
North Pacific, which includes the Sea of Okhotsk,
the Tsushima Current region, the Kuroshio/
Oyashio Current region, the Yellow Sea and the
East China Sea. Regional responses were detected
in physical oceanographic parameters such as
temperature and salinity, and in organisms at both
lower trophic levels (phytoplankton, zooplankton,
and invertebrates) and at higher trophic levels,
including fishes and marine mammals. Detailed

descriptions of the observed regional responses to
the 1998 basin-wide
Appendices 1-5.

shift are provided in
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Fig. 2.1 Designation of the five regions of the North Pacific for which ecosystem responses are
reported: (1) central North Pacific; (2) California Current System; (3) Gulf of Alaska; (4) Bering Sea
and Aleutian Islands: (5) western North Pacific comprised of (A) Sea of Okhotsk, (B) Tsushima Current
region and Kuroshio/Oyashio Current region and (C) Yellow Sea and East China Sea.
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2.2  Central North Pacific (CNP)

The central North Pacific experienced an abrupt
change, beginning in 1999, characterized by a rise
in sea surface height (SSH), indicating an increase
in the depth of the top of the thermocline. At the
same time the eastern and northern boundaries of
the North Pacific experienced a drop in SSH,
indicating a shoaling of the depth of the top of the
thermocline. In the central North Pacific, the SSH
rise was accompanied by a northward shift of low
surface chlorophyll water. At higher trophic
levels, Hawaiian monk seal pup survival at
northern atolls in the Northwest Hawaiian Islands
dropped since 1999. Also, since 1999 the albacore
fishing grounds for the U.S. troll fleet shifted
eastward. By 2003, the high SSH anomaly in the
central North Pacific had dissipated, suggesting it
was a response to the 1999 La Nifia rather than a
decadal shift.

2.3 California Current System (CCS)

Conditions in the California Current System are
subject to decade-scale regime behavior with an
overlay of episodic warm El Nifio and cold La
Nifia events that last a year or two. In the CCS,
there have been strong ecosystem responses to the
1977 and 1989 regime shifts. The 1977 regime
shift led to a protracted period of warm surface
waters, with a deepening of the thermocline and
the implication of lower productivity. However,
available zooplankton time series suggest that salp
biomass declined after 1977, while euphausiid
biomass remained unchanged and copepod
biomass actually increased. Following the 1977
regime shift, overall recruitment improved for
species such as Pacific sardine, and other species
experienced intermittent very strong year classes
(Pacific hake and Pacific cod). After the 1989
regime shift, the warm surface waters intensified
and became unproductive for many coastal
species. In coastal waters, zooplankton shelf
species were replaced by more southerly and
oceanic species. Many fish species (Pacific
salmon, Pacific hake, Pacific cod, and rockfish
species) experienced almost a decade of poor
recruitment. Southern migratory pelagics (Pacific
sardines and Pacific hake) extended the northern
limit of their distribution to northern British
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Columbia, and in some years, the Gulf of Alaska
(GOA).

After an intense El Nino in 1998, the CCS
experienced a very cold La Nifia in 1999. Since
1999, sea surface temperatures (SSTs) have tended
to return gradually toward warm conditions similar
to those in the 1980s and early 1990s, but
thermocline depths are now much shallower and
nutrient levels are higher, generating higher
primary and secondary production. Beginning in
1999, coastal waters saw a return of shelf
zooplankton, and many coastal fish stocks
experienced substantial improvements in year
class success. Some stocks produced good year
classes in 1999 (e.g., Pacific hake), and recent
returns of several salmon stocks have improved;
Columbia River salmon runs have been
extraordinary. In addition, the distribution of
migratory pelagic fishes (Pacific sardine and
Pacific hake) contracted to a more southerly
distribution. There is growing evidence, based on
a strong and diverse biological response, that a
regime shift favoring coastal organisms occurred
in 1998.

2.4 Gulf of Alaska (GOA)

Ecosystem responses to regime shifts in the GOA
were strong after the 1977 shift, but weaker after
the 1989 and 1998 shifts. Variation in the strength
of responses to climate shifts may be due to the
geographical location of the GOA in relation to the
spatial pattern of climate variability in the North
Pacific. Prior to 1989, climate forcing varied in an
east—west pattern, and the GOA was exposed to
extremes in this forcing. After 1989, climate
forcing varied in a north—south pattern, with the
GOA acting as a transition zone between the
extremes in this forcing. The 1989 and 1998
regime shifts did not, therefore, result in strong
signals in the GOA.

There were both physical and biological responses
to all regime shifts in the GOA. However, the
primary reorganization of the GOA ecosystem
occurred after the 1977 shift. After 1977, the
Aleutian Low intensified, resulting in a stronger
Alaska current, warmer water temperatures,
increased coastal rain and, therefore, increased
water column stability. The optimal stability



window hypothesis suggests that water column
stability is the limiting factor for primary
production in the GOA (Gargett 1997). A
doubling of zooplankton biomass between the
1950s and 1960s, and in the 1980s, indicates that
production was positively affected after the 1977
regime shift (Brodeur and Ware 1992).
Recruitment and survival of salmon and demersal
fish species also improved after 1977. Catches of
Pacific salmon, recruitment of rockfish (Pacific
ocean perch), and flatfish (arrowtooth flounder,
halibut, and flathead sole) recruitment and
biomass all increased. There are indications that
shrimp and forage fish, such as capelin, were
negatively affected by the 1977 shift, as survey
catches declined dramatically in the early 1980s
(Anderson 2003). The reduced availability of
forage fish may have been related to the decline in
marine mammal and seabird populations observed
after the 1977 shift (Piatt and Anderson 1996).

After 1989, water temperatures were cooler and
more variable in the coastal GOA, suggesting that
production may have been lower and more
variable. After 1989, British Columbia salmon
catches and survival were low and herring
declined in Queen Charlotte Islands (northern
British Columbia). However, salmon catches in
Alaska remained high. Groundfish biomass trends
that began in the early 1980s continued, with
increases in flatfish biomass. By the late 1980s,
arrowtooth flounder, rather than walleye pollock,
were dominant. Large groundfish biomass
estimates resulted in negative recruit per spawning
biomass anomalies of demersal fish.

There is some indication that the GOA ecosystem
may have responded weakly to the 1998 regime
shift. Increased storm intensity from 1999 to 2001
resulted in a deeper mixed layer depth in the
central GOA, and coastal temperatures were
average or slightly below average. After 1998,
coho survival increased in British Columbia,
shrimp catches increased in the northern GOA,
and the 1999 year class of both walleye pollock
and Pacific cod was strong in the northern GOA.
Recruitment information from longer-lived species
will be available in the near future, enabling
scientists to determine if there were other
responses to the 1998 climate shift.

It is apparent that many components of the GOA
ecosystem respond to decadal-scale variability in
climate and ocean dynamics. It is unknown if
changes observed after the 1998 shift will persist
in the GOA or how long the current conditions in
the GOA will last. Predicting regime shifts will be
difficult until the mechanisms that cause the shifts
are understood. Monitoring indicator species is
one method to improve our knowledge of the
mechanisms that cause the shifts.  Potential
indicator species of regime shifts would include
those that have a short life-span, are sensitive to
changes, are key trophic groups, and/or are
targeted by fisheries which produce data that are
readily available. Examples of potential indicator
species in the GOA that fit some of these criteria
include sockeye and pink salmon, Pacific herring,
juvenile fish abundance, ichthyoplankton, as well
as zooplankton biomass and composition.

2.5 Bering Sea and Aleutian Islands

Bering Sea (BS)

There is no evidence of a shift in the Bering Sea
system since 1977. The Bering Sea was subject to
a change in the physical environment and an
ecosystem response after 1977, a minor influence
from shifts in Arctic atmospheric circulation in the
early 1990s, and persistent warm conditions.

A major transformation, or regime shift, of the
Bering Sea occurred in atmospheric conditions
around 1977, changing from a predominantly cold
Arctic climate to a warmer subarctic maritime
climate as part of the Pacific Decadal Oscillation
(PDO).  This shift in physical forcing was
accompanied by a major re-organization of the
marine ecosystem on the Bering Sea shelf over the
following decade. Fisheries surveys and model
calculations show a shift in the importance of
pollock to the ecosystem, from near 10% of the
energy flow at mid-trophic levels in the 1950s—
60s, to over 50% in the 1980s, although biological
information for the earlier period is limited and
often speculative. Weather data beginning in the
1910s, and proxy data (e.g., tree rings) back to
1800, suggest that, except for a period in the
1930s, the Bering Sea was generally cool before
1977, with sufficient time for slow-growing, long-
lived, cold-adapted species to adjust. Thus the last
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few decades appear to be a transition period for
the Bering Sea ecosystem.

A specific Arctic influence on the Bering Sea
began in the early 1990s, as a shift in polar vortex
winds (the Arctic Oscillation — AO) reinforced the
warm Bering Sea conditions, especially promoting
an earlier timing of spring meltback of sea ice.
Flatfish increased in the mid-1980s due to changes
in larval advection, but the AO shift to weaker
winds in the early 1990s reduced these favorable
conditions for flatfish larval advection. Warm
conditions tend to favor pelagic over benthic
components of the ecosystem. Cold water species,
i.e., Greenland turbot, Arctic cod, snow crab and a
cold water amphipod, are no longer found in
abundance in the southeast Bering Sea, and the
range of Pacific walrus is moving northward.
While it is difficult to show direct causality, the
timing of the reduction in marine mammals
suggests some loss of their traditional Arctic
habitat. Although ecological conditions appear to
be mostly stable over the last decade, the warmest
water column temperatures have occurred in
2001-03 on the southeast Bering Sea shelf, despite
considerable year-to-year variability in the AO and
PDO.

Overall climate change occurring in the Arctic, as
indicated by warmer atmospheric and oceanic
temperatures and loss of 15% of sea ice and tundra
area over the previous two decades, is making the
Bering Sea less sensitive to the intrinsic climate
variability of the North Pacific. Indeed, when the
waters off the west coast of the continental United
States shifted to cooler conditions after 1998, the
subarctic did not change (Victoria pattern), in
contrast to three earlier PDO shifts in the twentieth
century. Thus the Bering Sea will likely continue
on its current warm trajectory, with biomes
transitioning northward, allowing pollock a larger
domain at the expense of cold- and ice-adapted
species, rather than transitioning back to a cold
regime.

Aleutian Islands (AI)

Climatic conditions vary between the east and
west Aleutian Islands around 170°W: to the west
there is a long-term cooling trend in winter, while
to the east, conditions change with the PDO. This
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is also near the first major pass between the
Pacific and Bering Seas for currents coming from
the east. Biological conditions in the Aleutian
Islands have changed since the 1980s, and it is too
soon to discern if there was a change associated
with the 1998 shift. Pollock and Atka mackerel do
not appear to vary on a decadal scale. However,
the biomass of pollock appears to be higher now
than it was in the 1980s. Pacific ocean perch
population dynamics vary on a decadal scale; for
example, Pacific ocean perch survival changed at
approximate times of regime shifts, 1977 and
1989. There is not enough information on the
early life history of Pacific ocean perch to define a
mechanism for the observed variations.

2.6 Western North Pacific (WNP)

Physical and biological data were summarized by
three main regions: the Sea of Okhotsk; the
Tsushima Current region and Kuroshio/Oyashio
Current region; and the Yellow and East China
Seas. The response to the 1989 regime shift was
strong in all regions of the western North Pacific,
from the East China Sea through to the Sea of
Okhotsk, including the Kuroshio/Oyashio Current
region. Winter air temperatures increased, which
corresponded to warmer SSTs. These conditions
have persisted to 2003 and appear to be connected
to the east—west dipole pattern observed in basin-
wide SST variability. A strong response to the
1998 regime shift was observed only in the Sea of
Okhotsk, with an intensification of colder
conditions and sea ice extent. This intensification
corresponded to a persistent increase in Sea of
Okhotsk  zooplankton  biomass in 1999,
particularly in the spring, for large-sized plankton
such as euphausiids, amphipods, copepods, and
arrow worms. Changes in the epipelagic fish
community were also evident, with Japanese
sardine, previously a dominant species, replaced
by herring, capelin and Japanese anchovy.
Walleye pollock remained the most abundant
species in the Sea of Ohkotsk, but the
intensification of colder conditions in 1998
corresponded to a decrease in walleye pollock
biomass. Consistent biological responses to the
1998 shift were not evident in the other western
North Pacific regions. The biomass of warm
water macro-algae in the Tsushima Current region
increased when water temperatures increased in



the late 1990s. Zooplankton biomass in the
Kuroshio Current region has varied since 1978,
but has remained at low levels. Conversely,
zooplankton biomass in the eastern Yellow Sea
has remained at high levels since the late 1990s.
Phytoplankton and zooplankton biomass has
declined in the Bohai Sea, the western Yellow Sea,
and the East China Sea since the early 1980s. In
both the Kuroshio and Tsushima Current areas,
Japanese sardine began to decline in abundance
around 1988. In contrast, Japanese anchovy, jack
mackerel and Japanese common squid have
increased in abundance since the mid-1980s. Most
fish abundance and recruitment were normal in
1998, but recruitment of Japanese common squid
and Pacific saury were extremely poor.
Groundfish species in the Yellow Sea have
declined in abundance from the 1960s to 1990s.
Japanese common squid have increased and
maintained high levels since the 1990s.

2.7  Coherence in Regional Responses to the
1998 Regime Shift

Although each region does not respond in the
same manner to a regime shift, it is clear that
regions do respond in some manner to most shifts.
The 1998 regime shift had the greatest impact in
the most southerly regions (i.e., the central North
Pacific and the California Current System) and
had virtually no impact in the Bering Sea. It is
important to note that the El Nifio event in 2002—
03 has produced a signal that may have
confounded characterization of the new state.
Table 2.1 provides a summary of the basin-wide
climate—ocean indices (Section 1), and the
physical and biological components of each
region, which are reported in detail in Appendices
1-5. The table is intended to provide a single
source of summary information of all of the
indices and time series that were reviewed by the
Study Group. For each data series, the overall
state was characterized for regime periods to
provide an indication of the nature of that climate,
ocean or ecosystem component during previous
regimes (1947-76; 1977-88; 1989-97). 1In a
similar manner, each year subsequent to 1998 was
also categorized to provide an indication of which
components changed, when those components
changed, and the impact of the 2002-03 EIl Nifio
event.

2.8 Climate Indicators for Detecting Regime
Shifts

A number of indices and indicators are used
operationally to quantify climate state and
variability. These are derived principally from
available long-term data and easy-to-monitor
physical fields. Some of the indices relevant to
identifying decadal climate variability are
described in Section 1. For ecosystem variability,
fishery-based and other biologically-based
indicators should be used as well, although these
are less developed. Because they are proven
reasonable indicators of past regime shifts, the
existing climate indices (e.g., PDO, Victoria,
Northern Oscillation Index) should continue to be
tracked and used as indicators of changes in
climate and North Pacific Ocean conditions.
However, research should also continue on
developing and testing the utility of new
indicators.

Decadal climate variability in the North Pacific is
not a two-state system represented by a single
mode (e.g., alternating cool/warm states), but is a
result of more than one climate mode. It is not
plausible to predict when the system will go back
to the previous phase of a mode such as the PDO,
because it may switch to a different mode.
Furthermore, it is not possible to say when the
next change will occur, but only to detect if a
change has occurred in accordance to some criteria
of a regime shift. The observational record is
short relative to the time scale of regime shifts, so
it is not certain if the modes observed this century
are regular in timing and intensity. Furthermore, it
is possible that additional modes of climate
variability have existed in the past, prior to
instrumented monitoring, but within the
evolutionary scope of fish populations, and
perhaps new patterns will become dominant as a
result of future natural and anthropogenic climate
change.

Existing indicators generally characterize basin-
scale patterns. It is important to monitor physical
changes at regional scales, and to use indices
which represent fields or processes that directly
affect fishery populations (e.g., coastal upwelling,
circulation, stratification) rather than a broad-scale
index that may be integrating a number of
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different signals in different regions. On the other
hand, while the historical sequence of regime
shifts requires multiple indicators to fully explain
basin-scale variability, it is more likely that a
single indicator will consistently describe regional
climate shifts.

Sea surface height and ocean color observed from

satellites may be reliable regime indicators
because they integrate many processes of
ecological  importance  (thermal  structure,

circulation, primary production), and satellite
technology makes these fields consistently and
regularly available. Monitoring to develop and
maintain indices that are more directly and
intimately related to the productivity of a fishery
population or ecosystem should be a high priority
because these types of indices will be consistent in
explaining biological variability — as opposed to
the common indicators currently available which
are merely proxies of the biological changes we
seek to track. Finally, research should continue on
identifying the mechanisms by which climate
change leads to ecosystem response. Such efforts
are critical if we are to efficiently recognize the
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signals that will produce the shifts in marine
populations of importance to managers.
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